
Operations Research

Primal/Dual LP Problems (Main Ideas and Examples)

Assume that all primal constraints are equations with non-negative right-hand side,
and all the variables are non-negative. Then, we have the following rules for constructing
the dual problem

Primal Problem objective Dual problem
Objective Constraints type Variable sign

maximization minimization � unrestricted
minimization maximization  unrestricted

Key ideas

- Assign a dual variable for each primal (equality) constraint.

- Construct a dual constraint for each primal variable.

- The (column) constraint coefficients and the objective coefficient of the jth primal
variable respectively define the left-hand an the right-hand sides of the jth dual con-
straint.

- The dual objective coefficients equal the right-hand sides of the primal constraint
equations.

Example 1

• Primal problem

maximize z = 5x1 + 12x2 + 4x3

subject to x1 + 2x2 + x3  10

2x1 � x2 + 3x3 = 8

x1, x2, x3 � 0

• Primal in equation form

maximize z = 5x1 + 12x2 + 4x3 + 0x4

subject to x1 + 2x2 + x3 + x4 = 10

2x1 � x2 + 3x3 + 0x4 = 8

x1, x2, x3, x4 � 0

• Dual

minimize w = 10y1 + 8y2

subject to y1 + 2y2 � 5

2y1 � y2 � 12

y1 + 3y2 � 4

y1 + 0y2 � 0

y1, y2 unrestricted

• Dual problem

minimize w = 10y1 + 8y2

subject to y1 + 2y2 � 5

2y1 � y2 � 12

y1 + 3y2 � 4

y1 � 0

y2 unrestricted
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Example 2

• Primal problem

minimize z = 15x1 + 12x2

subject to x1 + 2x2 � 3

2x1 � 4x2  5

x1, x2 � 0

• Primal in equation form

minimize z = 15x1 + 12x2 + 0x3 + 0x4

subject to x1 + 2x2 � x3 + 0x4 = 3

2x1 � 4x2 + 0x3 + x4 = 5

x1, x2, x3, x4 � 0

• Dual

maximize w = 3y1 + 5y2

subject to y1 + 2y2  15

2y1 � 4y2  12

�y1 + 0y2  0

0y1 + y2  0

y1, y2 unrestricted

• Dual problem

maximize w = 3y1 + 5y2

subject to y1 + 2y2  15

2y1 � 4y2  12

y1 � 0

y2  0

Example 3

• Primal problem

maximize z = 5x1 + 6x2

subject to x1 + 2x2 = 5

�x1 + 5x2 � 3

4x1 + 7x2  8

x1 unrestricted, , x2 � 0

• Primal equation form (here x1 = x

�
1 �x

+
1 )

maximize z = 5x

�
1 � 5x

+
1 + 6x2

subject to x

�
1 � x

+
1 + 2x2 = 5

�x

�
1 + x

+
1 + 5x2 � x3 = 3

4x

�
1 � 4x

+
1 + 7x2 + x4 = 8

x

�
1 , x

+
1 , x2, x3, x4 � 0

• Dual

minimize z = 5y1 + 3y2 + 8y3

subject to y1 � y2 + 4y3 � 5

�y1 + y2 � 4y3 � �5

2y1 + 5y2 + 7y3 � 6

�y2 � 0

y3 � 0

y1, y2, y3 unrestricted

• Dual problem

minimize z = 5y1 + 3y2 + 8y3

subject to y1 � y2 + 4y3 = 5

2y1 + 5y2 + 7y3 � 6

y2  0

y3 � 0

y1 unrestricted
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Following the rules listed above, we can use matrix-vector notation to easily find the dual
of any linear programming problem (written in standard form).

Primal problem

maximize c

T
x

subject to Ax = b

x � 0

Here A is a m ⇥ n matrix, c,x 2 Rn
, and

b 2 Rm
.

m constraints and n decision variables.

Dual problem

minimize b

T
y

subject to A

T
y � c

Here y 2 Rm (dual variable)

n constraints and m decision variables.

Primal problem

minimize c

T
x

subject to Ax = b

x � 0

Dual problem

maximize b

T
y

subject to A

T
y  c

Some useful properties

1. Any feasible solution to the dual problem gives a bound on the optimal objective function

value in the primal problem.

2. Understanding the dual problem leads to specialized algorithms for some important

classes of linear programming problems. Examples include the transportation simplex
method, the Hungarian algorithm for the assignment problem, and the network simplex
method.

3. The dual can be helpful for sensitivity analysis. Changing the primal’s right-hand side
constraint vector or adding a new constraint to it can make the original primal optimal
solution infeasible. However, this only changes the objective function or adds a new
variable to the dual, respectively, so the original dual optimal solution is still feasible
(and is usually not far from the new dual optimal solution).

4. The dual variables give the shadow prices for the primal constraints. Suppose you have
a profit maximization problem with a resource constraint i. Then the value yi of the
corresponding dual variable in the optimal solution tells you that you get an increase
of yi in the maximum profit for each unit increase in the amount of resource i.

5. Sometimes the dual is easier to solve. A primal problem with many constraints and
few variables can be converted into a dual problem with few constraints and many
variables (the fewer the constraints, the fewer computations required in each iteration
of the simplex method).
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6. The dual can be used to detect primal infeasibility. If the dual is a minimization
problem whose objective function value can be made as small as possible, and any
feasible solution to the dual gives an upper bound on the optimal objective function
value in the primal, then the primal problem cannot have any feasible solutions.

MATLAB and Optimization

1. If you are not familiar with MATLAB please click the following links and watch the
tutorial videos:

(a) Video 1 : Getting Started with MATLAB
http://www.mathworks.com/videos/getting-started-with-matlab-68985.html

(b) Video 2 : Writing a MATLAB Program
http://www.mathworks.com/videos/writing-a-matlab-program-69023.html

2. Recall the Klee and Minty linear programming problem. In its general form, this
LP problem is given by

max 2

n�1
x1 + 2

n�2
x2 + ...+ 2xn�1 + 1xn

subject to 1x1 ++2

n�1
x2 + ...+ 44xn�1 + 1xn  5

4x1 + 1x2+4x24xn�1 + 4xn�1 + 1xn  5

2

8x1 + 4x2 + 1x3+4xn�14xn�1 + 1xn  5

3

...+2

n�1
x2 + ...+ 4xn�1 + 1xn ...

2

n
x1 + 2

n�1
x2 + ...+ 4xn�1 + 1xn  5

n

xi � 0, i = 1, ..., n

The Tableau Simplex Method, starting at x = (0, 0, ...0)

T
, is known to visit all ex-

treme points in this LP.

We can use the MATLAB built-in solver for linear programming (LP) problems (this
is part of the Optimization Toolbox by MathWorks).
http://www.mathworks.com/help/optim/ug/linear-programming-algorithms.html

We use the function linprog in this example.

3. Some things to try:

(a) Run the MATLAB file (.m file) and verify the solution to the Klee and Minty
problem for n = 4.

(b) Compare the running time and number of iterations for both methods, simplex
and interior-point: in the .m file, modify the line that declares the method to
be used
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% Rei Sanchez-Arias. WIT
% Spring 2016. MATH 3700 OR
% Linear Programming Example(LP)
% Goal: use MATLAB command linprog to solve the Klee and Minty problem
% Type help linprog for instructions or visit
% http://www.mathworks.com/help/optim/ug/linprog.html
%
% Test Problem: (n = 4) 
% maximize    8*x_1 + 4*x_2 + 2*x_3 + x_4 
% subject to     x_1                       <= 5
%              4*x_1 + x_2                 <= 25
%              8*x_1 + 4*x_2 + x_3         <= 125
%             16*x_1 + 8*x_2 + 4*x_3 + x_4 <= 625
%                    x_1 , x_2 , x_3 , x_4 >= 0

% Cost function: recall linprog solves a minimization problem
f = [-8 ; -4; -2; -1];
% Right-hand side:
b = [5; 25; 125; 625];
% Matrix A (constraints) nxn matrix for this LP
A = [1 0 0 0; 4 1 0 0; 8 4 1 0; 16 8 4 1];
% Lower-bounds (non-negativity constraint)
lb = zeros(4,1);

% Optimization solver options: ('simplex'  or 'interior-point')
method = 'interior-point';
options = optimoptions(@linprog,'Algorithm',method);

% Find solution x, f(x), and number of iterations
ub  = [];
Aeq = [];
beq = [];
x0  = [];

% Start timer
tic
[x,fopt,exitflag, output,lambda] = linprog(f,A,b,Aeq,beq,lb,ub,x0,options);
% Stop timer
total_time = toc;
x

fprintf('***************************************\n\n');
message = strcat(['Optimal point x found. Method used: ', ' ',method]);
fprintf(strcat(message, ' algorithm\n'));
fprintf('f(x) = %f, after %d iterations \n', -fopt,output.iterations)
% Notice that the solution that MATLAB returns must be multiplied by -1
% for our maximization problem
fprintf('Time : %f seconds\n', total_time);
fprintf('***************************************\n\n');
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Introduction to MATLAB 
 
 
 
 
MATLAB stands for MATrix LABoratory. It is developed by The Mathworks, Inc. 
(http://www.mathworks.com). Matlab is an interactive, integrated, environment 
for numerical computations, symbolic computations, and scientific visualizations. 
It is a high-level programming language. 
 
 
 
 
 
• Quitting Matlab 
To quit Matlab just type quit in the command window. Caution: if you do this 
everything that you had typed in the command window will be lost.  
• Runaway or Endless Computation 
A runaway or endless computation happens when you have a program that would 
not stop of that got stuck. To stop programs like this just use ctrl + c. 
 
• Help 
To get help just type help in the command window and you will have a list of the 
topics inside help. If you want help in a specific function type help 
function_name  and it will give you a short description of the function. (for 
example, help factorial). If you feel you need more help click the icon ? on 
the Matlab window. 
 
• Matlab Special Characters 
;     Suppress printing   *    Multiplication   
%   Comments  /    Division 
+    Addition   \    Solution to A*x=b 
-    Subtraction  …  Continue statement on next line 
 
• Relational Operators 
 
<     less than   >=    greater than 
>     greater than  ==    equal 
<=   less than or equal  ~=    not equal 
 

• Logical Operators 
 
&   and   ~   not   |    or 
• Constants 
In Matlab you don’t need type declaration. To create a constant just type 
name=value where name is the name of the constant and value is the value you 
want for it. To use a constant you created just type the name of the constant.  
To change the value of the constant just type name=new value 
 
Examples: 
A = 3    s = ’hi’     f = 1e-4    alpha = 5.647 
 
Also Matlab is case sensitive; if you try to use for example the constant f but you 
type F it will tell you that the variable does not exist. 
 
• Operations with Constants 
You can do operation with constants just like you do them in a calculator. You 
only need to have the constants created before you want to do the operations. 
Matlab does not give you an error when you want to perform operations on 
different type of constants. You can also save the result in a new constant. 
 
Example 
D = A + alpha   in this case   D = 8.6470 
E = A*alpha      in this case   E = 16.9410 
 
• Vectors 
To create a vector just type name=[V1; V2; … Vn] where name can be any 
name you want for your vector and V1, V2, …, Vn are the values of your 
vector. You can also create vector by typing 
name=[lower:increment:upper] which creates a vector with values from 
the lower to upper limits. To access an element in a vector just type 
name(index) where index is the location of the element. To add elements or 
change a value from the vector just type name(index)=new value 
 
Examples 
 
If V=[1;2;3;4]  then V(2) will return 2 or V(2:4) will return the elements 2 
to 4 in this case 2 3 4 
 
Let T=1:10 (if you don’t declare any increment the increment will be of one). T 
will have the numbers from one to ten. 
If U=10:-1:1 then U will have the numbers from ten to 1 

http://www.mathworks.com/
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• Operations with Vectors 
For any operation you want to perform between vectors the vectors must have 
the same dimensions, in other words, the same number of rows and columns. 
To add or subtract two vectors just type vector1 + or – vector2. 
Example  
If V1=[1;2;3;4]  V2=[2;4;5;7]  V3=V1+V2  V4=V1-V2 then 
V3=[3;6;8;11] and       V4=[-1;-2;-2;-3] 
 
The symbol ‘ works as the transpose operator. Then since, V1 is a column vector, 
V1’ will be a row vector. To multiply vectors remember that their dimensions 
must agree. 
 
Example 
 
If V1=[1;2]  V2=[2;4]  V5=V1*V2’   then  V5=[  2 4             

       4    8] 
and    V1’*V2 = 10  
 
• Matrices 
You can create matrices in different ways. You can put a colon or a space in 
between elements and you can put a semicolon or hit the return button to 
indicate a new row. You always have to end and start a matrix with a bracket. 
 
Example 
A=[1 2 3    or   A=[1,2,3;4,5,6]  or   A [1 2 3; 4 5 6]  or  A=[1,2,3 
       4 5 6]                        4,5,6] 
To access an element in a matrix just type the name of the matrix and the index of 
the element. 
Example 
A(1,1)=1, A(2,3)=6 
To access an entire row of a matrix just type name(row number, : ) 
Example 
B=A(1, : )    B = [1 2 3] will have row one 
To access an entire column just type name( : , column number) 
 
Example 
C=A( : ,3)    then C = [3 6] will have the third column 
To obtain a part of the matrix just type name(row indexes, column 
indexes) 
Example 
D=A(1:2,2:3) D = [ 2 3 
                   5 6 ] 

• Operations with Matrices 
 
For any operation you want to perform between matrices the matrices must have 
the appropriate dimensions (as defined in matrix algebra). To add or subtract two 
matrices just type matrix1 + or – matrix2. 
Example  
If m1=[1 2; 3 4]  m2=[2 4; 5 7]  m3=m1+m2  m4=m1-m2  
Then m3=[ 3  6     and    m4=[ -1 -2 
        8 11]                 -2 -3] 
To multiply two matrices just type matrix1 * matrix2. 
Example 
If m1=[1 2; 3 4]  m2=[2 4; 5 7]   m5=m1*m2 
Then m5=[ 12    18 
         26    40 ] 
 
• If Statement 
The if statement checks if the conditional statement is true or false, if true it will 
execute the commands if false the statement will not be executed and the 
program will go to the elseif clause of to the else clause if neither of this two are 
present it will go to the end. The format for an if statement is:     
 
 if condition   (condition must include a relational operator)  

    Statements 
       end  (every if statement must have an end) 
 
Example 
n=3                           n=3 
if n<6         if n<6 
  x = n^2;        OR           x = n^2; 
  n = 5;            n = 5; 
end                         elseif n > 10 
            x = 1; 
            n = 0; 
                              else 
           x = 0; 
         end  
 
• For Loop 
 
The for loop repeats the group of statements a predetermined fixed number of 
times. The format for a for loop is: 
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for i=limit1:inc:limit2 (where increment (inc) can be 
positive ornegative. If inc is not defined, the 
default increment is one) 

     Statements  (It will repeat executing  
end  the statements until limit1 reaches limit2) 

 
If limit1 is equal to limit2 the statement will still be executed once. 
 
Example 
for i=1:5            for i=5:-.5:n 
  x=2^i;            OR    x=2^i; 
end    end 
 
 
• While Loop 
The while loop executes the statements while the condition is true. If the 
condition is false the statements will not be executed. When doing a while loop 
always make sure that inside the loop there is a statement that will eventually 
make the condition false, else you will have a runaway computation. The format 
for the while loop is: 
 

while condition 
     Statements 
End 

 
Example 
n = 5; 
while n <= 15 
   x = 2*n; 
   n = n+1;               % this ensure that n will eventually be greater than 15  
end         %  making the condition false 
 
(anything you write right after a % sign will be considered a comment) 
 
• M-Files  
 
An M-file is a file where you can put a sequence of statements and save them on a 
disk. They are called M-files because they must have the file type ".m" as the last 
part of their filename. M-files are useful when you need to execute a series of 
statements at the same time and when you need to edit multiple commands. 
Inside an m-file you can have if statements, loops and graphs among other things. 
 

 
------------------------------------------------------------------------------------------------------------- 
% Example Simple Newton Method to find x such that 
f(x)=0 
 
x = 3;     % initial point 
f = (x^2)-1;   % Original function 
df= 2*x;    % First derivative 
 
iter = 0; 
while iter<100   % maximum number of iterations 
 
    if abs(f)<1e-6,  
 break  
    end   % you got the solution 
     
    deltax = -f/df; % solving the Newton step 
    x = x + deltax; % update 
 
    iter = iter+1; % updating iterations 
    f = x^2-1;   % Evaluate the function at the  

% current step 
    df = 2*x;   % Evaluate the first derivative  
 
end 
 
x    % To get the last value of x 
------------------------------------------------------------------------------------------------------------- 
 
This program will be saved as newton1.m, to run the program just type 
newton1 at the command window. Make sure the directory in the command 
window is the same as the directory where you saved your program. 
 
• Storing Data 
 
When doing a program it may be necessary to store the value of different 
variables at iterations. 
To do this you can use fid = fopen( ‘filename’ ,’ Permission’ ) 
opens the file filename in the mode specified by permission. Permission can be: 
 
'r'     read                      'r+'    read and write (do not create) 
'w'    write (create if necessary)                    'w+'  create for read and write 
'a'    append (create if necessary)                 'a+'   read and append  
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This will create and open the file where you will be storing the data. To store the 
data you will use fprintf(fid, ‘ format’ ,variables)  where fid 
has been initialized before to be the file you will be using, variables will be the 
name of the variables you want to save and format can be: 
 
%c Single character      %f         Fixed-point notation 
%i integer notation  %g   more compact of %e or %f. 
%e  Exponential notation  % String of characters 
 
 You can also specify the spacing you want with: 
 
\b Backspace      \n    New line    \t    Horizontal tab  
 
 
------------------------------------------------------------------------------------------------------------- 
%Example Newton Method with data storing 
 
x = 3;     % Initial point 
f = (x^2)-1;    % Original function 
df= 2*x;     % First derivative 
iter = 0; 
fid= fopen('results.txt', 'w'); 
% fid is the name of the file  
fprintf(fid, 'iter\t x\t\t f(x)\n');   
% title of the columns in your table 
while iter<100   % maximum number of iterations 
    if abs(f)<1e-6, break ,end % you got the solution 
    deltax = - f/df;  % solving the Newton step 
    x         = x + deltax; % update 
    iter      = iter+1;       % updating iterations 
    f          = x^2-1;                    
% Evaluate function at current x 
    df=2*x;  % Evaluate first derivative at x 
    fprintf(fid, '%i\t %f\t %g\n', iter, x, f); 
end 
fclose(fid); 
------------------------------------------------------------------------------------------------------------- 
 
You can save this program as newton2.m, to run the program just type newton2 
in the command window. After you run the program your results.txt file will 
look something like this: 
 
iter  x   f(x) 
1  1.666667  1.77778 

2  1.133333  0.284444 
3  1.007843  0.0157478 
4  1.000031  6.1037e-005 
5  1.000000  9.31323e-010 
 
• Functions 
A function is a type of M-file and has the format:   
 
function [output1,…,outputn] = filename(input1,…, inputn) 
 
Functions are useful when you want to make a program more general by being 
able to change some parameters when you execute the program instead of having 
to change the context of the program. Also a function can call another function. 
The name of the function has to be the same as the name of the file. 
------------------------------------------------------------------------------------------------------------- 
% Example general Newton method 
 
function [iter, sol] = newton3(x) 
% input   :    
% x        the initial guess 
% output  : 
% iter :  the number of iterations it took to converge 
% sol :  the approximate solution 
Iter = 0; 
[f,df] = func(x); 
fid =  fopen('results.txt', 'w'); 
fprintf(fid, 'iter\t x\t\t f(x)\n');  
%the title of the columns in your table 
while iter<100  %maximum number of iterations 
    if abs(f)<1e-6, break ,end   
   %you got the solution 
    deltax = -f/df;  %solving the Newton step 
    x = x+deltax;  %update 
    iter = iter+1;  %updating iterations 
    [f,df] = func(x);    
    %Evaluate function and 1st derivative at x 
    fprintf(fid, '%i\t %f\t %g\n', iter, x, f); 
end 
sol = x; 
fclose(fid); 
------------------------------------------------------------------------------------------------------------- 
 
This Newton method is getting the function and derivative from an outside 
function called func. The function func will be like this:  
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------------------------------------------------------------------------------------------------------------- 
function [f,df] = func(x) 
   f  = x.^2 – 1;    % Original function 
   df = 2*x ;    % First derivative of the function 
end 
------------------------------------------------------------------------------------------------------------- 
This function needs to be saved under the name func.m in the same directory as 
your main program. To run your main program just type  

[iter, sol] = newton3(x) 
where x can be any value you want to use as the initial guess. You will get the 
same table of results as in the previous example. 
 
• Plotting 
To draw a two dimensional graph just type plot(X,Y,S) where X is the 
independent variable, Y is the dependent variable and S is the format of the 
graph. S can be any of the following characters or a combination of the different 
columns. 
           y     yellow              *     star                     -     solid 
           k     black           o     circle                  :     dotted 
           b     blue                       x     x-mark              -.    dash dot  
           r      red             +     plus                    - -    dashed    
           g     green          d     diamond  
 
To see more plotting options type help plot     
           
Example: 
 
If x  = [1:.5:10]  and  y=2*x  then  
plot(x,y)       plots a solid blue line. (Blue is the default color for plotting) 
plot(x,y,'gd') plots green diamonds at each data point but does not 
connect them. 
 

  
 
• Clearing a Plot 
When you use the command plot a figure is created. To clear this figure just type 
clf and the current figure will be cleared. 
 
• Multiple Plots 
There are three different options for multiple plots. The first option is to have all 
the plots in one figure. This is a good idea when the two graphs are related and 
you want to see for example if they intersect. To use this option, type hold on 
after the first plot command then type the next plot command. Also you can type 
grid on to add grid lines.  
 
Example: 
plot(x,y) 
hold on, grid on 
plot(x,y,'gd') 

 
 
The second option is to divide the figure in to several subfigures, in other words to 
have several small graphs in the same paper. To use this option just type 
subplot(m,n,p)  this will divide the figure into a mxn matrix and p will be the 
current plot.  
 
Example: 
 
subplot(2,2,1); plot(x,y) 
subplot(2,2,2); plot(x,x.^2,'rd-') 
subplot(2,2,3); plot(x,x,'b*') 
subplot(2,2,4); plot(x,x.^3, 'g') 
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The last option is to have different graphs in different figures, in other words you 
will have each graph in a different paper. To do this just type figure(n) where 
n will be the number of the figure you are using currently.  
 
Example: 
 
figure(1) 
 
plot(x,y) 
 
figure(2) 
 
plot(x,y,'g+') 
 
• Axis Labels, Titles and Legend  
 
To add axis labels just type xlabel(‘label’) for the x-axis and 
ylabel(‘label’) for the y-axis. To add a title to your graph just type 
title(‘title’). A legend can be added when you are plotting several 
graphs on the same plot. Just type  
legend(‘legend1’, ‘legend2’, …, ‘legendn’).  
 
 

Example: 
 
x =[1:.5:5]; 
 
plot(x,x.^2)     
 
hold on 
 
plot(x,x.^2,'gd') 
 
legend('graph', 'data points') 
 
xlabel('independent variable') 
ylabel('dependent variable') 
 
title('Example of a plot') 
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