Introduction

When it comes to music, we all have a unique, peculiar style that characterizes us. What lies behind the songs that appeal to us? In some way, are they similar? Particularly, can we group songs just by the way they sound? A variety of measurement techniques used in science gather data that often times consists of many more variables per sample than the number of samples present. Principal Component Analysis (PCA) and clustering help reduce the dimensionality of such variables, improving visualization so that one can observe where specific, for instance, audio features lie on a chart when comparing those variables. Crucial information might be gathered by analyzing the evolution of music over decades through audio features. In this project, an exploration of the different features that represent songs is performed and a study of the power of data mining and clustering techniques is presented.

Data Collection

The case study for data analysis was performed using Rstudio [1], Spotify's API, along with the rvest , tidyverse and spotifyr packages [2-4]. The rvest package allows to extract data from a web page (web scraping); tidyverse is used for data transformation and cleaning; and spotifyr pulls song audio features from the Spotify Web API (Application Programming Interface: https://developer.spotify.com/documentation/web-api). This API accesses user related data, which for the purposes of this project was organized via playlists for a Spotify account created for the project. Playlists were created individually and include the top 10 summer hits from the years 1958 through 2017. Similarly, we gathered data from Grammy award winners from the years 1959-2018, including albums or songs from different categories.

```
# build list of dataframes
myrecords <- vector("list", length = m)</pre>
for (j in 1:m ) {
 # get tracks from playlist
  bb_tracks <- get_playlist_tracks(bb_my_pl[j, ])</pre>
  # extract audio features from playlist
  audio features <- get_track_audio_features(bb_tracks)</pre>
  # inner join by `track uri` to include song metrics and meta-data
  df_join <- inner_join(audio_features, bb_tracks, by = "track_uri")</pre>
  # add column `year` to the data frame
  df_join$year <- str_extract(bb_my_pl[j, ][1], "\\d++") %>%
                    as.numeric()
  myrecords[[j]] <- df_join</pre>
  # get next item in playlist
```

Fig 1: Sample R code snippet used to create a data frame containing tracks auto features (e.g. valence, duration, danceability) and other meta-data associated to the song (e.g. album name, album cover image, year)

Data Science with R

Programming was essential in the development of this project. R [1] is an open source language widely used in the data science community, with focus on statistical data analysis, data visualization and machine learning methods. During this project, tools from the tidyverse package [2] were used for data wrangling and data visualization with the help of RStudio, an open source integrated development environment (IDE) for R.

In particular we used the ggplot2 package for data visualization, dplyr and stringr for data transformation and summaries, and rvest for web scraping. Additionally we used tools from the tidytext package [5] for text processing and encoding.

Fig 2 : RStudio logo. RStudio makes R easier to use. It includes a code editor, debugging and visualization tools. Logos for the ggplot2, dplyr, and stringr packages.

Music Data Mining using Audio Features Extracted from Spotify

Sandy Benito, Antoine Carr, Reinaldo Sanchez-Arias, Ph.D St. Thomas University, School of Science, Miami Gardens, FL

A song is comprised of numerous variables that accounts for its rhythm, how fast it is, the loudness of it, among several others. Principal Component Analysis, better known as PCA [6], is a dimensionality reduction technique that allows for optimized visualization of high dimensional data by projecting key variables (components) that contribute to the highest variance.

and danceability contribute the most to the 2nd principal

This work was made possible by the support of the School of Science at St. Thomas University (STU). We also want to highlight the support of our research partner Acxel Vega from Miami Dade College, for always being present when needed, and the Faculty and Staff at the School of Science at STU. This project was supported, in part, by U.S. Department of Education grant award P03C1160161 (STEM SPACE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the respective funding agency.

Fig 6: Song grouping based on emotions determined by audio features. Audio features in the interval [0, 1] were considered to cluster 600 different Billboard summer hits.

0.9

Valence (musical positiveness conveyed by a track)

Group C (83)

--- -"Stay With Me"

Mellow and acoustic

by Sam Smith (2014)

by Elton John (1994)

Group D (136)

- "HUMBLE"

-"Can You Feel The Love Tonight"

Non-instrumental, fast, loud

by Kendrick Lamar (2017) -"Fight Song" by Rachel Platten (2015)

Trends

Data for Grammy Awards winners of different categories was collected using tools from the rvest package to perform web scraping from the Grammys official website (https://www.grammy.com/grammys/awards). Below the changes in different audio features are shown for the winning albums in the category of "Best Alternative Music Album" in seven consecutive years.

Fig 7. Winner album in 2012 has the highest acousticness: Bon Iver, an American indie folk band. Winner of 59th has Highest energy reported for "Blackstar" by David Bowie (winner in 2017) shows high levels of energy. Winner of the 55th edition has high levels of danceability: "Making Mirrors" by Gotye, a Belgian-born Australian multi-instrumentalist and singer-songwriter. In that album, the single "Somebody That I Used to Know" was the winner in the category of "Record of the Year"

The data we used for the Grammy awards winner analysis can be found at: https://github.com/reisanar/datasets/blob/master/all grammy.csv

Conclusions

The clustering technique developed four well-defined clusters in the acousticness/valence coordinate system (as shown in Fig. 7). This demonstrates which points are closely related to each other as well in the higher dimensional space and represents a structure in the data considered in this study. The analysis of different audio features helps understand patterns and changes in the music industry. This information can be used for the design of modern recommendation systems and predictive models.

References

[1] R: free software environment for statistical computing and graphics.

- https://www.r-project.org/
- [2] tidyverse: an opinionated collection of R packages designed for data science. https://www.tidyverse.org/
- [3] spotifyr: Pull Track Audio Features from the 'Spotify' Web API
- https://cran.r-project.org/web/packages/spotifyr/index.html [4] rvest: Easily Harvest (Scrape) Web Pages
- https://cran.r-project.org/web/packages/rvest/index.html
- [5] tidytext: Text Mining using 'dplyr', 'ggplot2', and Other Tidy Tools.
- https://CRAN.R-project.org/package=tidytext
- [6] Ringner, M. (2008). What is principal component analysis? Nature biotechnology,
- [7] James, G. (2017). An introduction to statistical learning: With applications in R. New

Acknowledgements